
Freeswitch & Opus
Audio Codec
CLUECON 2017

Index

● Intro (Opus)
● SDP Offer/Answer , fmtp
● Forward Error Correction (FEC)
➢ Encoder
➢ Decoder
● Bitrate adjustment

Opus

 “Opus is unmatched for interactive speech and music transmission
over the Internet, but is also intended for storage and streaming
applications. It is standardized by the Internet Engineering Task Force
(IETF) as RFC 6716 which incorporated technology from Skype’s SILK
codec and Xiph.Org’s CELT codec.”

 https://opus-codec.org/

Opus

Opus

• Low algorithmic delay
• Has the aim of maximizing the quality/bitrate tradeoff
• Resilient to packet loss
• Storage & playback format
• Strong API

WebRTC and Opus

• Opus support is mandatory for WebRTC implementations

• Some browsers default to Opus stereo, some to mono, some default
to FULLBAND, some to WIDEBAND , some use DTX (different ways of
using the WebRTC lib) . Behaviour may change from version to
version

Freeswitch & Opus (mod_opus.c)

• Personal claim: mod_opus.c RFC 7587 compliant (RTP Payload
Format for the Opus Speech and Audio Codec)

• Tied with the jitter buffer
• Opus @ 48 khz , Opus @ 8 khz , Opus @ 16 khz (new)
• Codec control
• 10 -120 ms ptime @ 8 khz , 10-60 ms ptime @ 16 khz , 10-40 ms

ptime @ 48 khz

SDP Offer/Answer

• Fmtp params (Local Encoder) :
sprop-maxcapturerate, sprop-stereo

• Fmtp params (Local Decoder):
 ptime, maxptime, maxaveragebitrate, maxplaybackrate, stereo, cbr,

useinbandfec, usedtx

m=audio 54312 RTP/AVP 101

a=rtpmap:101 opus/48000/2

a=fmtp:101 useinbandfec=1; maxplaybackrate=8000; maxaveragebitrate=14000

a=ptime:20

SIP profile settings

FMTP sent by FS is affected by these SIP profile settings:

<param name="inbound-codec-negotiation" value="greedy"/>

<param name="inbound-late-negotiation" value="false"/>

Resampling

Sampling is the reduction of a continuous signal to a discrete signal.
The sampling frequency or sampling rate, fs, is the average number of

samples obtained in one second (samples per second)

 fs > 2B

Transcoding

• You don’t want to do resampling for transcoding unless you have no
choice

• Use opus@8000h for PCMA/PCMU transcoding into Opus

• opus@8000h Suitable for mobile apps

Freeswitch: FEC on Opus
encoder/decoder

Freeswitch: FEC

General Definition : Forward Error Correction (FEC) or channel
coding is a technique used for controlling errors in data transmission
over unreliable or noisy communication channels. The central idea is
the sender encodes the message in a redundant way by using an
error-correcting code (ECC)

FEC in audio codecs : The in-band FEC feature of Opus helps
reduce the harm of packet loss by encoding some information about
the prior packet.

Freeswitch: FEC on Opus encoder/decoder

● keep-fec-enabled (encoder)
FEC f(packet_loss, bitrate)
<param name="keep-fec-enabled" value="1"/> (opus.conf.xml)

<param name="packet-loss-percent" value="15"/>

● Jitter Buffer (decoder)
<param name="advertise-useinbandfec" value="1"/>

<param name="use-jb-lookahead" value="1"/>

<action application="set" data="jitterbuffer_msec=2p:25p:"/>

<action application="set" data="rtp_jitter_buffer_plc=true"/>

<action application="set" data="rtp_jitter_buffer_during_bridge=true"/>

<action application="set" data="suppress_cng=true"/>

Freeswitch: FEC on the encoder

Feedback loop: reading RTCP packet loss, calculating an average,
calling a function (codec_control) to tell the codec that there is a
certain percentage of packet loss for the outgoing media stream.

Even when FEC is not used, telling the encoder about the expected
level of loss will help it make more intelligent decisions. By default the
implementation assumes there is no loss.

Freeswitch: FEC on the encoder

● Implemented logic for codec_control in mod_opus.c , added a function
to keep FEC enabled by slightly increasing the bitrate

● #define SWITCH_OPUS_MIN_FEC_BITRATE 12400 (no FEC info
below this bitrate)

● f(packet_loss, bitrate)

<param name="keep-fec-enabled" value="1"/> (opus.conf.xml)

Initial packet loss:

<param name="packet-loss-percent" value="15"/>

Freeswitch: FEC on the encoder

● We will recalculate a new bitrate based on the packet loss
percentage taken from RTCP arriving to us from the user app if the
packet loss is higher than 10%

● Trick: by forcing FEC on the local encoder the remote decoder will
decode more FEC packets if there is packet loss, hence increase
call quality

Freeswitch: FEC on the decoder

● “In order to make use of in-band FEC the decoder must delay its
output by at least one frame so that it can call the decoder with the
decode_fec argument on the next frame in order to reconstruct the
missed frame. This works best if it's integrated with a jitter buffer.”

●The jitter buffer intentionally delays the arriving packets

●FEC will be played if available (voiced frames)

Opus PLC will be played instead of FS PLC (libspandsp)

Freeswitch: FEC on the decoder

✓ Disable default Freeswitch PLC (done with libspandsp)

✓ Enable Jitter Buffer so it would pass SFF_PLC flag to the decoder

✓ If we miss the n-th frame , then pick n+1 frame from the Jitter
Buffer if it's present :
▪ if we have the frame then try to do FEC on it
▪ if we don't have the frame we do PLC and return

Freeswitch & Opus:
Congestion control / Bitrate
adjustment.

Kalman Filter

 “an algorithm that uses a series of measurements observed over time,
containing statistical noise and other inaccuracies, and produces
estimates of unknown variables that tend to be more accurate than
those based on a single measurement alone”

<param name="adjust-bitrate" value="1"/>

Kalman Filter

• Based on RTCP Feedback
• Senses sudden changes in average of Packet loss and RTT and

adjusts encoder bitrate via codec control
• Varies the bitrate in 0.4 kb steps (1200 bitrates) . Min: 6kb Max: 512 kb
• Hard to model
• Experimental code

Kalman filter

• “adjust-bitrate” setting enables a form of congestion control
and it's based on estimators and detectors

• we pass the “future” packet loss percentage to the encoder

FS CLI>opus_debug on

[DEBUG] mod_opus.c:453 decode: opus_frames [1] samples [320] audio

bandwidth [NARROWBAND] bytes [87] FEC[yes] channels[1]

[DEBUG] mod_opus.c:764 Missing SEQ 482 Checking JB

[DEBUG] mod_opus.c:769 Lookahead frame found: 1364160:483

[DEBUG] mod_opus.c:781 FEC info available in packet with SEQ: 483
LEN: 91

[DEBUG] mod_opus.c:798 MISSING FRAME: Look-ahead FEC

[DEBUG] mod_opus.c:453 FEC correction: opus_frames [1] samples [320]
audio bandwidth [NARROWBAND] bytes [91] FEC[yes] channels[1]

Statistics

Logged at the end of a call. Eg:

• Opus decoder stats: Frames[7038] PLC[2247] FEC[29]

• Opus encoder stats: Frames[1219] Bytes encoded[35490]
Encoded length ms[24380] Average encoded bitrate
bps[11830] FEC frames [755]

MULTIDSLA – test equipment

Opus related: What’s new in Freeswitch
(2016-2017)

• opus@16000h (Opus at 16000 Hz, together with AMR-WB helps
connect the WebRTC World with the IMS World) - no resampling
when transcoding

• mod_opusfile (module to encode and decode OGG/OPUS files) -
upstream PR

FS & Opus: Nice to have

● Codec settings on dialplan (eg: different SIP trunks might need
different OPUS fmtp settings)

● RTCP – XR ?

● Ptime change during the call ? (hard to achieve, much easier with
client side software)

● Kalman filter: aggregate information (packet loss % , RTT, jitter) – eg:
comparable with sensor fusion – come up with a single value which
would describe how congested is the network (how bad is it)

Resources

Opus FAQ - https://wiki.xiph.org/OpusFAQ

FreeSWITCH And The Opus Audio Codec Confluence Page (written by

me and Giacomo Vacca)

https://freeswitch.org/confluence/display/FREESWITCH/

FreeSWITCH+And+The+Opus+Audio+Codec

Definition of the Opus Audio Codec -https://tools.ietf.org/html/rfc6716

Opus Interactive Audio Codec - https://opus-codec.org/

THANK YOU! 

QUESTIONS?

